要看书1kanshu.net

对于有志于在数学上更进一步学生,或者教授来说,这种重大猜想的证明报告会是不可错过的东西。

......

舞台上,徐川有条不紊的讲解着代数簇与群映射工具。

而礼堂的角落中,跟随着导师张伟平前来参加数学交流会的胡行健眼神复杂的看着台上那个侃侃而言同龄人。

距离此前在晨星数学奖的颁奖晚会上一别,时间已经过去了两年多。

两年半的时间,都还不够让他从学校中完成所有的学业的,而此前那个原本就耀眼无比的少年,如今却已经站在了他遥不可及的巅峰。

霍奇猜想的证明啊。

这是常人花费一辈子的时间去钻研都无法突破一点的难题,却被那人仅用了两年的时间就解决掉了。

“教授,你说他真的解决了霍奇猜想吗?”终于,他忍不住小声的朝着一旁导师张伟平问道。

尽管他一直都在努力听讲,也提前看过了那一百多页的论文。

但今日坐在这里,他依旧无法跟上对方的节奏,而现在,对于那份正在讲解中的代数簇与群映射工具,他更是已经直接听不懂了。

行或不行,数学就是这么现实的东西。

听到询问,张伟平扭头看了眼自己的这个学生,看到他一脸的神情复杂,笑了笑道:“怎么了,被打击到了?”

对于自己这个弟子的心思与情绪,他自然能猜到几分。

顿了顿,他接着安慰道:“你不用,也没必要和他比,如果说你是天才,那他就是个真正的妖孽。”

“这样的妖孽人物,纵观整个数学界的发展史,也一只手可以数的过来。”

.......

报告的时间过的很快,在徐川的讲解中,预定的一小时报告会眨眼间就过去了一半。

而此时他才完成代数簇与群映射工具的讲解。

当然,真正的报告会不可能一个小时就结束,在场的所有人,无论是徐川,亦或者礼堂中的听众,都做好了在这里呆到结束就可以直接吃晚餐的准备。

对于这漫长的时间并没有人在意,在意这个的早已经起身离开了,留下的人无一不希望讲解越详细越好,哪怕他们听不懂。

舞台上,徐川讲解完代数簇与群映射工具,望向了台下的观众。

接下来,便是霍奇猜想的证明了。

尽管从理论上来说,霍奇猜想的证明远比代数簇与群映射工具更加重要。但无论是对于徐川来说,还是对于台下的观众而言,当这份工具被制造出来并学会使用后,剩下的东西就顺理成章了。

这就像是用一把斧头去砍一颗大树一样。

尽管这颗树木庞大到难以想象,但只要时间足够,你仍然可以用它一点一点的将它砍倒。

利用代数簇与群映射工具去完成霍奇猜想,就像是用一把斧头砍一棵参天大树一样。

或许在未来的某一天,数学界还能找到类似‘电锯’一样更高效的工具,但现在,这把斧头的重要性与锋利性,母庸置疑。

它顺利的噼开了霍奇猜想那道看不见的枷锁,将新世界的大门展现在了所有人的眼前。

.....

另一边,报告厅的前排,已经被事先安排好了位置的几行座位中,一位老人目光浑浊却深邃无比的看着舞台上的青年。

在这位老人两侧,是另外两名稍显年轻一些老人,一位是普林斯顿高等研究院的皮埃尔·德利涅教授。

另一位,则是马克斯普朗克数学研究所的格尔德·法尔廷斯教授。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

有这两位全世界最顶级的数学大拿一左一右的陪伴在身边,可见中间这位老人的身份不凡。

而事实上,他亦如是。

只因为这位老人叫让-皮埃尔·塞尔。

史上最年轻的菲尔兹奖得主、阿贝尔奖的首个得主、沃尔夫数学奖,数学史上第一个拿到三奖大满贯的天才数学家。

在2014年教皇格罗滕迪克老先生离世后,这位老人完全可以说是当今数学界最伟大的学者。

他在拓扑学、代数几何、数论等纯粹数学的研究极深。哪怕是现在已经隐隐有第一人之称的法尔廷斯,在他面前也如同学生一样。

只不过如今塞尔的年岁已经高达九十一岁,早已经退休安享晚年。

事实上,普林斯顿高等研究院并没有给塞尔发邀请函,毕竟你得考虑他的年岁和身体状况还能否经得起折腾。

但出乎意料的是,在得知了这个消息后,塞尔坚决要亲自过来,哪怕身边的人再怎么劝导也没有用。

盯着舞台上正认真讲解的少年,塞尔的眼神中朦胧一片,仿佛间,时间像是回到了七十年前年,还在学生的时代的他参加希尔伯特教授的讲座一样。

那道伟岸的身影,和如今的少年是多么相似。

......

与此同时,随着徐川的讲解,霍奇猜想的证明过程进入了最核心的收尾阶段。

讲台上,徐川翻过一页ppt文稿:“.....基于映射 tr、限制映射和 poincar′e,对偶定理都与 gal(k/k)的作用相容,所以 gal(k/k)在 y定义的上同调类上的作用也平凡。”

当最终时刻来临时,整个礼堂都寂静了下来,落针可闻。

原先因代数簇与群映射工具而涌现的一些小声讨论在此刻都消失不见,即便是此刻已经完全听不懂论文报告的学者,心中也涌现出了一股奇妙的感觉。

于是,所有听众都情不自禁的屏住了呼吸,紧紧地盯着舞台上的幕布。

那上面,有着关于霍奇猜想的最后证明步骤。

随着最后一步的到来,徐川将目光从投影幕布上挪开,看向了台下的观众。

深呼吸一次后,他沉稳的开口道:“当 i≤n/2时, ai (x)n ker(l?n?2i+1)上的二次型x→(?1)il?r?2i(x.x)是正定的......”

“由此,可得,在非奇异复射影代数簇上,任一霍奇类均是代数闭链类的有理线性组合。”

“即,霍奇猜想成立!”

当最后一句话落下,亚历山大大礼堂中瞬间被如雷的掌声填满。

继lefschetz在1924年证明霍奇猜想在低维空间中是正确的后,经历了长达近百余年的风雨时间,不管最终的结论如何,但在这一刻,那个站在舞台上的天才少年,用自己的理论终结了一个世纪难题。

并且,征服了来自全世界数学家!

.......